skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brandstätter, Andreas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce Spatial Predictive Control (SPC), a technique for solving the following problem: given a collection of robotic agents with black-box positional low-level controllers (PLLCs) and a mission-specific distributed cost function, how can a distributed controller achieve and maintain cost-function minimization without a plant model and only positional observations of the environment? Our fully distributed SPC controller is based strictly on the position of the agent itself and on those of its neighboring agents. This information is used in every time step to compute the gradient of the cost function and to perform a spatial look-ahead to predict the best next target position for the PLLC. Using a simulation environment, we show that SPC outperforms Potential Field Controllers, a related class of controllers, on the drone flocking problem. We also show that SPC works on real hardware, and is therefore able to cope with the potential sim-to-real transfer gap. We demonstrate its performance using as many as 16 Crazyflie 2.1 drones in a number of scenarios, including obstacle avoidance. 
    more » « less